
JANUARY 2007 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

(a). Let xn be a convergent sequence in E · F . Then, xn = enfn with

en ∈ E and fn ∈ F . By Heine-Borel, E is compact so there exists a

convergent subsequence enk
→ e ∈ E. Then, as 0 /∈ E,

xnk

enk
∈ F is

convergent sequence of elements in F .

As F is closed, x/e ∈ F , so that

xn → e · x
e
∈ E · F

so that E · F is closed.

(b). Note that Z and
{

1
n
| n ∈ N

}
∪ {0} are both closed sets.

Their product, however, is Q, which is not closed.

2. Problem 2

Let N ∈ N. Consider FN(x) :=
∑N

n=1
f(x+n)

n
. Then,

ˆ
R
FN(x)dx =

N∑
n=1

ˆ
R

f(x+ n)

n
dx

=
N∑
n=1

1

n
· ||f ||1

Now, if ||f ||1 6= 0, then as N →∞, FN(x)→∞, a contradiction to the

definition of F (x). Thus, ||f ||1 = 0, whence f(x) = 0 a.e as contended.

Date: December 26, 2017.
1



2 KELLER VANDEBOGERT

3. Problem 3

Note that

ˆ
R
exh(x)dx =

ˆ
R
eyex−y

ˆ
R
f(y)g(x− y)dydx

=

ˆ
R
ex−y
ˆ
R
eyf(y)g(x− y)dydx

Making the change of variable u = x − y, du = dx, and the above

becomes:

ˆ
R
exg(x)

ˆ
R
euf(u)dudx =

( ˆ
R
exg(x)dx

)(ˆ
R
exf(x)dx

)

4. Problem 4

(a) =⇒ (b): Assume f is absolutely continuous with f(0) = 0.

Then, set A :=
(
f ′
)−1

({1}). This is measurable as f ′ is measurable.

Then,

f(x) =

ˆ x

0

f ′(t)dt

=

ˆ 1

0

f ′(t)χ[0,x](t)dt

=

ˆ
A

χ[0,x](t)dt+

ˆ
Ac

0 · χ[0,x](t)dt

=

ˆ 1

0

χ[0,x]∩A(t)dt

= m
(
A ∩ [0, x]

)
(b) =⇒ (a): Note that f(0) = m({0}) m(∅) are both 0, so f(0) = 0.

Also, note that

f(x) =

ˆ x

0

χA(t)dt
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Whence f is absolutely continuous, so that f(x) =
´ x
0
f ′(t)dt, and we

see ˆ 1

0

f ′(t)− χA(t)dt = 0

=⇒ f ′(t) = χA(t) a.e

=⇒ f ′(x) ∈ {0, 1} a.e

Which yields the result.

5. Problem 5

(a). Note that by the existence of f ′(0), Taylor’s theorem guarantees

that f(x) = xf ′(0) + xh1(x) where h1(x)→ 0 as x→ 0. Then, we seeˆ 1

0

x−3p/2|g(x)|pdx =

ˆ 1

0

x−p/2|f ′(0) + h1(x)|pdx

6 2p
ˆ 1

0

x−p/2
(
|f ′(0)|p + |h1(x)|p

)
dx

6 2p
(
|f ′(0)|p + ||h1(x)||p∞

) ˆ 1

0

x−p/2dx

<∞

Where
´ 1

0
x−p/2dx <∞ since p ∈ [1, 2).

(b). Consider f(x) := x1/2. This is certainly continuous, but f ′(0) does

not exist. Also, ˆ 1

0

|g(x)|pdx =

ˆ 1

0

1

xp
dx =∞

6. Problem 6

Note that outer measure always exists. We can find open sets En

such that

m∗(En\A) <
1

n

Set E :=
⋂∞
n=1En; certainly m∗(E\A) = 0 by selection, and E is

measurable as the countable intersection of open sets.
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Now, if F ⊂ A, we have that F c ⊃ Ac in which case

m∗(E\F ) 6 m∗(E\A) = 0

Since E and F are measurable, m∗ = m, so that

m(E\F ) = 0

7. Problem 7

We argue by contraposition. Assume that f has no zeroes; then 1/f

is holomorphic and by the maximum modulus principle,

1

|f |
6

1

M

Rearranging, we then see

M 6 |f | 6M

in which case |f | is constant, so that f must be constant.

8. Problem 8

We work with the standard Wirtinger derivatives for convenience.

Assume that fg is holomorphic, so that

∂

∂z
(fg) = 0

=⇒ ∂f

∂z
· g + f

∂g

∂z
= 0

In which case, since g is holomorphic, we have ∂f
∂z
· g = 0; then either

g = 0 or ∂f
∂z

= 0. If ∂f
∂z

= 0, holomorphicity of f already implies that

∂f
∂z

= 0, in which case we deduce that f is constant.

If ∂f
∂z
6= 0, then we deduce that g = 0, as contended.
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9. Problem 9

(a). False. Consider sin(1/x). This is certainly bounded and contin-

uous on (0, 1) just by definition. Let δ > 0; we can find N ∈ N such

that

1

πn
− 1

πn+ π
2

< δ

for all n > N . However, we see that

| sin(nπ)− sin(nπ + π/2)| = 1

So this is not uniformly continuous.

(b). True. By homogeneity, we may assume without loss of generality

that ||f ||2 = ||g||2 = 1. Then, we see
ˆ 1

0

fgdx =

ˆ 1

0

f(g − 1)dx

6 ||g − 1||22 · ||f ||22

= 2− 2||g||1

Now, consider the transformations

f 7→ c · f, g 7→ g

c

for c 6= 0. Then, the lefthand side of the above string of equalities

remains unchanged, and we are left with

||fg||21 6 c2 − 2c||g||2 + 1

Optimizing in c (that is, just take the derivative wth respect to c and

set equal to 0), we see the minimum is obtained for c = ||g||1, so that

||fg||21 6 1− ||g||21

Which was to be proved.
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(c). False. Consider fn(x) := sin(n2x). One easily sees that ||fn||1 6

1
n2 , but fn(x) 6→ 0.

(d). True. Argue by contraposition; if f has no pole at a, then in some

neighborhood of a, we may write

f(z) =
∑
n>0

an(z − a)n

Then,

f ′(z) =
∑
n>1

nan(z − a)n−1

And this also has no pole at a.

(e). True. Note that

2p(|fn|p + |f |p)− |fn0f |p > 0

So that upon taking norms and employing Fatou’s lemma,

2p+1||f ||pp 6 lim inf
n→∞

(
2p(||fn||pp + ||f ||pp)− ||f − fn||pp

)
Which implies that

lim sup
n→∞

||fn − f ||pp = 0

and we get the result.


