

JANUARY 2007 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

(a). Let x_n be a convergent sequence in $E \cdot F$. Then, $x_n = e_n f_n$ with $e_n \in E$ and $f_n \in F$. By Heine-Borel, E is compact so there exists a convergent subsequence $e_{n_k} \rightarrow e \in E$. Then, as $0 \notin E$, $\frac{x_{n_k}}{e_{n_k}} \in F$ is a convergent sequence of elements in F .

As F is closed, $x/e \in F$, so that

$$x_n \rightarrow e \cdot \frac{x}{e} \in E \cdot F$$

so that $E \cdot F$ is closed.

(b). Note that \mathbb{Z} and $\left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\}$ are both closed sets.

Their product, however, is \mathbb{Q} , which is not closed.

2. PROBLEM 2

Let $N \in \mathbb{N}$. Consider $F_N(x) := \sum_{n=1}^N \frac{f(x+n)}{n}$. Then,

$$\begin{aligned} \int_{\mathbb{R}} F_N(x) dx &= \sum_{n=1}^N \int_{\mathbb{R}} \frac{f(x+n)}{n} dx \\ &= \sum_{n=1}^N \frac{1}{n} \cdot \|f\|_1 \end{aligned}$$

Now, if $\|f\|_1 \neq 0$, then as $N \rightarrow \infty$, $F_N(x) \rightarrow \infty$, a contradiction to the definition of $F(x)$. Thus, $\|f\|_1 = 0$, whence $f(x) = 0$ a.e as contended.

Date: December 26, 2017.

3. PROBLEM 3

Note that

$$\begin{aligned} \int_{\mathbb{R}} e^x h(x) dx &= \int_{\mathbb{R}} e^y e^{x-y} \int_{\mathbb{R}} f(y) g(x-y) dy dx \\ &= \int_{\mathbb{R}} e^{x-y} \int_{\mathbb{R}} e^y f(y) g(x-y) dy dx \end{aligned}$$

Making the change of variable $u = x - y$, $du = dx$, and the above becomes:

$$\int_{\mathbb{R}} e^x g(x) \int_{\mathbb{R}} e^u f(u) du dx = \left(\int_{\mathbb{R}} e^x g(x) dx \right) \left(\int_{\mathbb{R}} e^x f(x) dx \right)$$

4. PROBLEM 4

(a) \implies (b): Assume f is absolutely continuous with $f(0) = 0$.

Then, set $A := (f')^{-1}(\{1\})$. This is measurable as f' is measurable.

Then,

$$\begin{aligned} f(x) &= \int_0^x f'(t) dt \\ &= \int_0^1 f'(t) \chi_{[0,x]}(t) dt \\ &= \int_A \chi_{[0,x]}(t) dt + \int_{A^c} 0 \cdot \chi_{[0,x]}(t) dt \\ &= \int_0^1 \chi_{[0,x] \cap A}(t) dt \\ &= m(A \cap [0, x]) \end{aligned}$$

(b) \implies (a): Note that $f(0) = m(\{0\})$ $m(\emptyset)$ are both 0, so $f(0) = 0$.

Also, note that

$$f(x) = \int_0^x \chi_A(t) dt$$

Whence f is absolutely continuous, so that $f(x) = \int_0^x f'(t)dt$, and we see

$$\begin{aligned} \int_0^1 f'(t) - \chi_A(t) dt &= 0 \\ \implies f'(t) &= \chi_A(t) \text{ a.e} \\ \implies f'(x) &\in \{0, 1\} \text{ a.e} \end{aligned}$$

Which yields the result.

5. PROBLEM 5

(a). Note that by the existence of $f'(0)$, Taylor's theorem guarantees that $f(x) = xf'(0) + xh_1(x)$ where $h_1(x) \rightarrow 0$ as $x \rightarrow 0$. Then, we see

$$\begin{aligned} \int_0^1 x^{-3p/2} |g(x)|^p dx &= \int_0^1 x^{-p/2} |f'(0) + h_1(x)|^p dx \\ &\leq 2^p \int_0^1 x^{-p/2} (|f'(0)|^p + |h_1(x)|^p) dx \\ &\leq 2^p (|f'(0)|^p + \|h_1(x)\|_\infty^p) \int_0^1 x^{-p/2} dx \\ &< \infty \end{aligned}$$

Where $\int_0^1 x^{-p/2} dx < \infty$ since $p \in [1, 2)$.

(b). Consider $f(x) := x^{1/2}$. This is certainly continuous, but $f'(0)$ does not exist. Also,

$$\int_0^1 |g(x)|^p dx = \int_0^1 \frac{1}{x^p} dx = \infty$$

6. PROBLEM 6

Note that outer measure always exists. We can find open sets E_n such that

$$m^*(E_n \setminus A) < \frac{1}{n}$$

Set $E := \bigcap_{n=1}^{\infty} E_n$; certainly $m^*(E \setminus A) = 0$ by selection, and E is measurable as the countable intersection of open sets.

Now, if $F \subset A$, we have that $F^c \supset A^c$ in which case

$$m^*(E \setminus F) \leq m^*(E \setminus A) = 0$$

Since E and F are measurable, $m^* = m$, so that

$$m(E \setminus F) = 0$$

7. PROBLEM 7

We argue by contraposition. Assume that f has no zeroes; then $1/f$ is holomorphic and by the maximum modulus principle,

$$\frac{1}{|f|} \leq \frac{1}{M}$$

Rearranging, we then see

$$M \leq |f| \leq M$$

in which case $|f|$ is constant, so that f must be constant.

8. PROBLEM 8

We work with the standard Wirtinger derivatives for convenience.

Assume that $\bar{f}g$ is holomorphic, so that

$$\frac{\partial}{\partial \bar{z}}(\bar{f}g) = 0$$

$$\implies \overline{\frac{\partial f}{\partial z}} \cdot g + f \frac{\partial g}{\partial \bar{z}} = 0$$

In which case, since g is holomorphic, we have $\overline{\frac{\partial f}{\partial z}} \cdot g = 0$; then either $g = 0$ or $\frac{\partial f}{\partial z} = 0$. If $\frac{\partial f}{\partial z} = 0$, holomorphicity of f already implies that $\frac{\partial f}{\partial \bar{z}} = 0$, in which case we deduce that f is constant.

If $\frac{\partial f}{\partial z} \neq 0$, then we deduce that $g = 0$, as contended.

9. PROBLEM 9

(a). False. Consider $\sin(1/x)$. This is certainly bounded and continuous on $(0, 1)$ just by definition. Let $\delta > 0$; we can find $N \in \mathbb{N}$ such that

$$\frac{1}{\pi n} - \frac{1}{\pi n + \frac{\pi}{2}} < \delta$$

for all $n > N$. However, we see that

$$|\sin(n\pi) - \sin(n\pi + \pi/2)| = 1$$

So this is not uniformly continuous.

(b). True. By homogeneity, we may assume without loss of generality that $\|f\|_2 = \|g\|_2 = 1$. Then, we see

$$\begin{aligned} \int_0^1 fg dx &= \int_0^1 f(g-1) dx \\ &\leq \|g-1\|_2^2 \cdot \|f\|_2^2 \\ &= 2 - 2\|g\|_1 \end{aligned}$$

Now, consider the transformations

$$f \mapsto c \cdot f, \quad g \mapsto \frac{g}{c}$$

for $c \neq 0$. Then, the lefthand side of the above string of equalities remains unchanged, and we are left with

$$\|fg\|_1^2 \leq c^2 - 2c\|g\|_1 + 1$$

Optimizing in c (that is, just take the derivative with respect to c and set equal to 0), we see the minimum is obtained for $c = \|g\|_1$, so that

$$\|fg\|_1^2 \leq 1 - \|g\|_1^2$$

Which was to be proved.

(c). False. Consider $f_n(x) := \sin(n^2 x)$. One easily sees that $\|f_n\|_1 \leq \frac{1}{n^2}$, but $f_n(x) \not\rightarrow 0$.

(d). True. Argue by contraposition; if f has no pole at a , then in some neighborhood of a , we may write

$$f(z) = \sum_{n \geq 0} a_n(z-a)^n$$

Then,

$$f'(z) = \sum_{n \geq 1} n a_n (z-a)^{n-1}$$

And this also has no pole at a .

(e). True. Note that

$$2^p(|f_n|^p + |f|^p) - |f_n 0 f|^p \geq 0$$

So that upon taking norms and employing Fatou's lemma,

$$2^{p+1} \|f\|_p^p \leq \liminf_{n \rightarrow \infty} (2^p (\|f_n\|_p^p + \|f\|_p^p) - \|f - f_n\|_p^p)$$

Which implies that

$$\limsup_{n \rightarrow \infty} \|f_n - f\|_p^p = 0$$

and we get the result.